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Abstract Incidence of malignant melanoma is increasing
globally. While the initial stages of tumors can be easily
treated by a simple surgery, the therapy of advanced stages
is rather limited. Melanoma cells spread rapidly through the
body of a patient to form multiple metastases. Consequently,
the survival rate is poor. Therefore, emphasis in melanoma
research is given on early diagnosis and development of novel
and more potent therapeutic options. The malignant melano-
ma is arising from melanocytes, cells protecting mitotically
active keratinocytes against damage caused by UV light
irradiation. The melanocytes originate in the neural crest and
consequently migrate to the epidermis. The relationship
between themelanoma cells, the melanocytes, and neural crest
stem cells manifests when the melanoma cells are implanted
to an early embryo: they use similar migratory routes as the
normal neural crest cells. Moreover, malignant potential of
these melanoma cells is overdriven in this experimental
model, probably due to microenvironmental reprogramming.

This observation demonstrates the crucial role of the microen-
vironment in melanoma biology. Indeed, malignant tumors in
general represent complex ecosystems, where multiple cell
types influence the growth of genetically mutated cancer cells.
This concept is directly applicable to the malignant melano-
ma. Our review article focuses on possible strategies to
modify the intercellular crosstalk in melanoma that can be
employed for therapeutic purposes.

Keywords Melanocyte .Melanoma cells . Melanoma
ecosystem . Cancer-associated fibroblast . Keratinocyte .

Cytokine

Increase of melanoma incidence

The incidence of malignant melanoma is growing world-
wide. This phenomenon can be exemplified on the data
from the Czech Republic, where the melanoma incidence
increased almost four times over the last 35 years (Global
Burden of Disease Cancer Collaboration et al. 2015; ÚZIS
2011). Fortunately, the melanoma-related mortality is not
increasing so rapidly as efficient screening programs and
public awareness allow dermatologists to identify and
treat early stages of tumors (Higgins et al. 2015). The
explanation of this global trend includes, but is not limit-
ed to, changes of the climate and more extensive UV light
exposition (Nishisgori 2015). The initial stages of mela-
noma are quite easily curable by surgical resection. The
advanced stages are traditionally treated by chemotherapy
and/or immunotherapy. Several novel therapies for mela-
noma emerged over the last decade. These remarkable
drugs allow the oncologist to target specifically mutated
melanoma cells, block important signaling pathways in
them or unblock immune checkpoints, and trigger

Handling Editor:Pavel Draber

* Karel Smetana, Jr.
karel.smetana@lf1.cuni.cz

1 Institute of Anatomy, Charles University, 1st Faculty of Medicine, U
Nemocnice 3, 128 00 Prague, Czech Republic

2 BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
3 Department of Dermatology and Venerology, Charles University, 1st

Faculty of Medicine and General University Hospital in Prague, U
Nemocnice 2, 128 08 Prague, Czech Republic

4 Institute of Molecular Genetics, Academy of Sciences of the
Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic

5 Institute of Biochemistry and Experimental Oncology, Charles
University, 1st Faculty of Medicine, U Nemocnice 5, 128
53 Prague, Czech Republic

Protoplasma (2017) 254:1143–1150
DOI 10.1007/s00709-016-1038-z

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00709-016-1038-z&domain=pdf


immune attack against them. However, the combination of
several drugs is necessary for disease management in
some cases. Unfortunately, efficiency of this combined
therapy is still limited, accompanied by numerous compli-
cations, and it also represents financial burden on
healthcare systems even in developed countries (Harries
et al. 2016). In this light, search for more efficient
therapeutic modalities is still essential.

Melanocytes, their function, and origin

In the basic concept of epidermal biology, normal melano-
cytes are located in the basal layer of the epidermis. The
epidermal melanocytes produce pigment called melanin.
Melanin packages, melanosomes, are exocytosed and
immediately internalized by keratinocytes. Once ingested by
keratinocyte, melanosomes protect the keratinocyte nucleus
against UV light-induced DNA damage (Colombo et al.
2011). Next to this, melanocytes can be present also in the
dermis and other extracutaneous tissues as uvea and many
other atypical organs or tissues. Melanocytes in these loca-
tions can be relevant for the process of melanoma formation
in less typical sites.

Developmentally, epidermal keratinocytes originate from
the surface embryonic ectoderm and melanocytes develop
from the neural crest. The neural crest is formed from the
cellular layer connecting the neural plate with the surface
ectoderm (the prospective epidermis). During the process of
the neural tube formation, the neural folds elevate and fuse
and cells at the lateral border of the neuroectoderm begin to
dissociate from their neighbors. This population, the neural
crest, will undergo and epithelial-to mesenchymal transition
as it leaves the neuroectoderm by active migration and
displacement to enter the underlying mesoderm. The melano-
cytes migrate by dorsal pathway through the dermis, where
they will enter the ectoderm through holes in basal lamina to
form melanocytes in the skin and hair follicles (Gilbert 2000;
Hall 2008). The designation of the neural crest cells as precur-
sors for distinct cell types is under precise genetic as well as
epigenetic control (Zhang et al. 2014).

Hair follicle as a cradle for the stem cells

Hair follicle represents a unique human organ that goes
postnatally through multiple cycles of repeated morphogenesis
(Lee and Tumbar 2012). It is able to undergo cyclic
regeneration and regression. A very important role in this pro-
cess is assigned to a population of epidermal stem cells (Lavker
et al. 2003) and their crosstalk with mesenchymal dermal
papilla cells. The epidermal stem cells seem to be, at least,
tripotent. They can give rise to cells of the hair follicle,

epidermal keratinocytes, and cells of sebaceous glands.
However, the bulge region also contains highly multipotent
stem cells of the neural crest origin (Sieber-Blum and Grim
2004; Sieber-Blum et al. 2004). These cells, also called
melanocyte stem cells, are highly multipotent, and they can
in vitro differentiate to the same lineages as the neural crest cells
(Sieber-Blum and Grim 2004; Sieber-Blum et al. 2004). They
are the most superficially located and hence easily accessible
multipotent stem cells in the human body (Krejčí and Grim
2010). This makes them suitable, e.g., for tissue engineering
(Sieber-Blum et al. 2006). This coexistence of two distinct
pools of highly potent stem cells in a limited compartment is
physiologically unique and raises questions about their possible
collaborative interactions. Transcription factor NFIB was
proposed as an important molecule orchestrating the interaction
between the two stem cell pools (Chang et al. 2013). This fact
can be highly inspirative for further research on employment of
these stem cell types in regenerative medicine.

Grafting of melanoma cells to embryo

As depicted in seminal transplantation experiments in 1970s,
cells of teratocarcinoma with the normal number of chromo-
somes injected to a mouse blastocyst are able to participate in
formation of normal tissues. The resulting animals are a
mosaic of normal cells and the cells originating from the
teratocarcinoma (Mintz and Illmensee 1975). Based on this
concept, Pierce postulated idea that embryonic microenviron-
ment can determine cancer cell properties (Pierce 1983). This
conclusion seems to be relevant also in melanoma, as the
melanoma cells injected to an embryo migrate by the same
routes as the neural crest cells (Kulesa et al. 2006; Hendrix
et al. 2007; Kasemeier-Kulesa et al. 2008; (Bailey et al. 2012;
Díez-Torre et al. 2009); Kulesa et al. 2013) (Fig. 1). This
migration in the embryonic environment is accompanied by
significant reduction of their malignant potential (Lee et al.
2005). However, it is necessary to note that the timescale of
these animal models is significantly shorter than the human
lifespan. These findings are further supported by the observa-
tion that the melanoma initiating (stem) cells exhibit CD271, a
receptor for a growth factor important for the neural crest cells
(Boiko et al. 2010). Human embryonic stem cells also seem to
reduce malignant properties of the melanoma cells by
production of gremlin (Kim et al. 2011). These observations
indicate uniformly that the embryonic microenvironment can
influence behavior of cancer cells (Abbott et al. 2008). This
fact might be relevant for the identification of novel therapeu-
tic targets in melanoma. The neural crest origin of the mela-
nocytes also suggests explanation of the enormous invasivity
of the cells from advanced melanomas because the neural
crest cells migrate to practically all tissues of the body.
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Al least in part, cells in malignant melanoma also exhibit
features of stemness; they specifically resemble in certain aspects
neural crest derived stem cells. This may substantiate reasons for
frequent melanoma treatment failures or recurrent disease,
because it is exceedingly difficult to completely eradicate these
cells (El-Khattouti et al. 2014, 2015). However, successful
targeting of the principal pathways responsible for stemness
maintenance in melanoma cells would represent an important
novel strategy of this tumor treatment (Alamodi et al. 2016).

The cancer microenvironment—lesson
from the cancer ecology

Last decades brought dramatic increase of available data about
adult tissue stem cells. However, the data focused predomi-
nantly on their potential in regenerative medicine and their
practical utilization is still far behind general expectation.
However, better understanding to normal cell differentiation
brought benefits in conjunction with the cancer stem cell the-
ory (Hamburger and Salmon 1977). By definition, the cancer
stem cells are in many aspects similar to the normal stem cells.
This similarity has direct implications for tumor therapy, as it
explains the resistance of the cancer stem cells to xenobiotics
including chemotherapy. Next to that, regenerative potential
of the normal cells has a good parallel in their cancerous
counterparts with consequences for the residual disease

(Motlík et al. 2007; Carnero et al. 2016). Despite sharing
important features, the cancer stem cells do not necessarily
originate from the tissue stem cells. They can arise by the
process of cell dedifferentiation, which could be initiated by
the accumulation of multiple genetic mutations acquired in
course of cancer development (Woodward and Hill 2016).

A specific tissue microenvironment is critically important
for stemness maintenance of the normal tissue stem cells as it
seems to control the activity of the stem cells (Choi et al. 2015,
2015). This specific microenvironment is traditionally called
the niche or the stroma. Surprisingly, our definition of and
understanding to this crucial factor are still rather poor. The
most substantial data are available for the hematopoietic stem
cell niche in the bone marrow (Birbrair and Frenette 2016).
However, this is not the most relevant model for biology of
solid tumors. Hair follicle as a joint niche for both the epider-
mal stem cells and the neural crest-originated stem cells may
be a more relevant model for the malignant melanoma. Next
to the cells present in the niche, we have to acknowledge also
the role of their products such as extracellular matrix, cyto-
kines, growth factors, and extracellularly released enzymes.
All these components must be considered as indispensable
components of this specific microenvironment (Lane et al.
2014; Choi et al. 2015). Indeed, malignant cells do not form
tumors by themselves: cancer-associated fibroblasts (CAFs),
infiltrating immune cells, and blood/lymphatic endothelial
cells as well as their extracellular products are participating
together in the process of cancer formation and progression
(Lacina et al. 2015). Mutual and multilateral interactions of
individual cell types are extremely complex and resemble nat-
ural ecosystems (Kareva 2011).

Great similarity between granulation tissue of the wound and
the cancer stroma was highlighted many times (Dvorak 1986;
Smetana et al. 2015). In both situations, characteristic presence
of highly specialized mesenchymal cells expressing smooth
muscle actin, myofibroblasts, was noted (Krejčí et al. 2016).
In wound, these cells participate in the wound contraction and
thus minimize the area which should be reepithelized. The
myofibroblasts are most likely formed from the local
mesenchyme (Jarkovska et al. 2014; Dvořánková et al. 2015),
probably due to increased activity of TGF-β and an endoge-
nous lectin galectin-1 (Dvořánková et al. 2011; Valach et al.
2012). Other sources of myofibroblasts were also proposed
(Lacina et al. 2015). In tumor, CAFs also express smooth mus-
cle actin, which makes them similar to the myofibroblasts
(Lacina et al. 2015; Smetana et al. 2015). Their contractile
ability is not emphasized but they are highly bioactive. They
are able to modulate the biological properties of many types of
tumors by production of multiple growth factors, chemokines,
and cytokines (Lacina et al. 2015). Moreover, CAFs from
epidermal carcinomas are able to influence the phenotype of
normal human keratinocytes to be similar to the cancer cells or
the epidermal stem cells. CAFs can also induce epithelial-to-

Fig. 1 a HNK-1-positive cells of the neural crest are located on both
sides of the neural tube of a chicken embryo. b Human melanoma cells
of the BLM cell line injected to the neural tube region, which exhibits
human vimentin, are present in the same localization as the neural crest
cells. Nuclei are counterstained with DAPI. Frozen longitudinal section
through chicken embryo parallel with dorsal surface. Bar is 100 μm
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mesenchymal transition (Strnad et al. 2010; Kolář et al. 2012).
This phenomenon is somewhat similar to the induction of hair
follicles in glabrous skin by transplantation of dermal papilla
mesenchymal cells (Jahoda et al. 1984). Moreover, normal
human neonatal fibroblasts isolated from the wound exert
activity comparable to CAFs in in vitro models (Mateu et al.
2016). This underscores the striking similarity between wound
healing and cancer as noted by Dvorak in 1986: Tumors–
wounds that do not heal.

Factors such as IL-6, IL-8, CXCL-1, BMP-4, IGF-2, FGF-
7, and TGF-β3 were discovered to participate in the crosstalk
between CAFs and the cancer cells (Lacina et al. 2015;
Smetana et al. 2015; Krejčí et al. 2016). The remarkable
number of these growth factors, chemokines, and cytokines
is involved in immune reaction and thus they can participate in
formation of inflammation and support the micromillieu that
stimulates oncogenesis.

CAFs from basal cell carcinoma drive normal fibroblasts to
acquire properties of the mesenchymal stem cells including
their differentiation plasticity (Szabo et al. 2011). This
observation suggests that the recruitment of the mesenchymal
cells to the cancer stroma can be both of the frontal type (the
cancer cells signal to the surrounding mesenchyme), but can
also propagate further in the lateral direction (themesenchyme
signals to the mesenchyme).

Intercellular interactions in malignant melanoma

The function of the melanocytes in the epidermis is dependent
on mutual contacts with keratinocytes. The number of these
intercellular contacts is significantly reduced during the
melanocyte malignization (Haass and Herlyn 2005). A switch
of expression of E-cadherin to N-cadherin as well as signifi-
cant reduction of connexin 43 expression was observed in the
keratinocytes surrounding the malignant cells. This is a strong
evidence of alterations in intercellular crosstalk (Haass et al
2004). Advanced nodular melanoma is overlayered by the
epidermis that exhibits, peripherally from the tumor, signs of
hyperplasia, paradoxically without accumulation of proliferat-
ing cells (McCarty et al. 2003; (Drunkenmölle et al. 2005;
Kodet et al. 2015). Moreover, this epidermis also suprabasally
and aberrantly expresses a marker of proliferating basal cells,
keratin 14, even in the distance of 15 mm from the tumor
margin. The mutual interaction between the neighboring
tissues, i.e., the melanoma and the epidermis, is also supported
by the presence of the pluripotency marker Nanog in their
nuclei (Fig. 2). Normal human keratinocytes cocultured with
the melanoma cells express markers of low differentiation
status such as keratins 8, 14, and 19. Majority of the epithelial
cells paradoxically express mesenchymal vimentin. Its
expression can be interpreted as a marker of epithelial-to-
mesenchymal transition. Unlike normal human melanocytes,

the neural crest-originated stem cells isolated from the hair
follicle exhibit the same activity (Kodet et al. 2015).

Production of FGF-2, CXCL-1, IL-8, and VEGF-A by
the melanoma/neural crest-originated stem cells seem to be
responsible for the control of the phenotype of the
cocultured keratinocytes (Kodet et al. 2015). It is necessary
to emphasize here that these results harmonize with the
abovementioned hypothesis on collaboration between both
stem cell types colocalized in the bulge region of the hair
follicle (Chang et al. 2013).

The reciprocal influence of keratinocytes on the behav-
ior of the melanoma cells is continuously discussed.
Keratinocytes control adhesion and migration of the
melanoma cells on laminin in vitro (Chung et al. 2011).
This process may affect melanoma metastasation. The role
of keratinocytes seems to be context dependent and plays
an important role in melanoma invasion in a reconstructed
skin model (Van Kilsdonk et al 2010).

As mentioned in the previous chapter, fibroblasts and
namely CAFs significantly influence biological properties of
various types of tumors. Conversely, platelet derived growth
factor CC (PDGF-CC), which is produced in melanoma,
stimulates recruitment of fibroblasts to the tumor and drives
their conversion into CAFs (Anderberg et al. 2009). CAFs
located in melanoma (M-CAFs) frequently express
podoplanin, similarly to other types of tumors. Its expression
correlates with aggressive behavior of the tumor cells (Kan
et al. 2014). In models where M-CAFs and melanoma cells
are in a direct contact, their crosstalk seems to be dependent on
the Notch1 signaling pathway (Shao et al. 2015). Melanoma
cells of advanced tumors growing in effusion fluid in pleural
cavity, where there are virtually no interacting fibroblasts,
usually lack their typical phenotype, which is otherwise
shared by cells of the primary tumor and organ metastases.
Both normal dermal fibroblasts as well as M-CAFs
significantly influence phenotype of ascitic melanoma cells
in coculture, where the melanoma cells acquire phenotypic

Fig. 2 Nuclei of epidermal keratinocytes in the vicinity of nodular
melanoma as well as nuclei of cells of malignant melanoma are positive
for the presence of the pluripotency marker Nanog. Bar is 20 μm
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properties of their primary tumors. This fibroblast activity is
further strengthened by conditioned medium from embryonic
stem cells (Kodet et al. 2013). Inflammatory cytokines and
chemokines, such as IL-6 and IL-8, also participate in the
CAFs crosstalk with the cancer cells in a paracrine manner
even without direct cellular contact (Kolář et al. 2012). These
factors are elevated in the sera of patients suffering from
advanced melanoma (Kucera et al. 2014; Sanmamed et al.
2014). Conditioned media from M-CAFs and from M-CAFs
cocultured with the melanoma cells have no effect on the
proliferation of the melanoma cells but they significantly
stimulate invasivity of the melanoma cells in collagen gel
(Jobe et al. 2016). Application of antibodies blocking the
activity of IL-6 and IL-8 fully inhibits the migration of the
melanoma cells in the collagen gel (Jobe et al. 2016). M-
CAFs are also able to influence phenotype of normal human
keratinocytes where they induce expression of a marker of
proliferating basal layer keratinocytes, keratin type 14.
Moreover, the keratinocytes stimulated by M-CAFs express
vimentin, a marker of epithelial-to-mesenchymal transition
(Kučera et al. 2015). These observations indicate that the
keratinocytes in the vicinity of the malignant melanoma are
under the influence of the melanoma cells and that M-CAFs
and these keratinocytes are able to affect the migratory activity
of the melanoma cells.

An interesting question arises, whether the activity of
CAFs is tumor type specific. M-CAFs are not able to stimulate
proliferation of glioblastoma cells more extensively than
normal dermal fibroblasts. However, M-CAFs significantly
stimulate glioblastoma invasivity (Trylcova et al. 2015).
Cells similar to CAFs were also discovered in samples of
human glioblastoma (Clavreul et al. 2014; Trylcova et al.
2015; Busek et al. 2016), which is interesting with respect to
the glioblastoma histogenesis. The CAFs of glioblastoma
probably originate from the mesenchymal stem cells that
actively migrate to the glioblastoma. This phenomenon seems
to harbor certain therapeutic potential as they can also bring
some therapeutic cargo to the tumor (Pacioni et al. 2015). Next
to glioblastoma, M-CAFs are able to significantly influence
phenotype of breast cancer cells (Dvořánková et al. 2012).
Observation that activity of M-CAFs is not tumor type specif-
ic can be important. This suggests a more general mechanism
of their bioactivity upon different types of tumors. Therefore,
targeting of this mechanism could have wider application in
different types of tumors.

Dealing with resistance to Vemurafenib treatment by
melanoma may be a prominent example. Vemurafenib is a
powerful therapeutic agent for the treatment of the melanomas
harboring B-Raf V600E mutation. Unfortunately, the therapy
must be frequently terminated due to acquired resistance to
Vemurafenib with consequent rapid disease progression. It is
likely that this therapeutic resistance is driven by the stroma
with high CAFs activation (Whipple and Brinckerhoff 2014).

Therapeutical suppression of CAFs activity can thus help to
delay or completely abrogate the acquired resistance to B-Raf
inhibitor therapy. Synthetic polyamines seem to be a
promising option in this context (Mifková et al. 2014).

Stromal immune reaction is evident in many tumors and
displays a multifaceted interaction of immune system and
tumor. Infiltration of malignant melanoma by leukocytes is a
frequent phenomenon with complicated interpretation.
Interestingly, the prognosis of a patient depends on the
predominant type of leukocytes. For example, high
peritumoral incidence of T and B lymphocytes and dendritic
cells represents a good prognostic marker. On the other hand,
predominance of granulocytes suggests poor survival progno-
sis (Ladányi 2015). Myeloid-derived suppressor cells present
in melanoma have an immunosuppressive effect and influence
negatively survival of melanoma patients. Application of
Ipilimumab, CTLA4 targeted antibody, significantly improves
survival of some patients and increases their quality of life
(Umansky et al. 2016). The PD-1 (programmed cell death—
1) receptor is expressed on the surface of activated T cells. Its
ligands, PD-L1/PD-L2 belong to the family of immune
checkpoint proteins that act as co-inhibitory factors, which
can halt or limit the development of the T cell response. The
granulocyte macrophage colony stimulating factor (GM-CSF)
application to melanoma patients also seems to have a
promising therapeutic effect in some patients, but the results
are quite heterogeneous (Hoeller et al. 2016).

Fig. 3 Proposed model of the malignant melanoma ecosystem with
marked interaction between the melanoma cells (Me), melanoma
cancer-associated fibroblasts (M-CAF), keratinocytes (Ke), and
infiltrating leukocytes (Leu). Extracellular matrix (ECM)
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Conclusion

Similarly to other types of tumors, human malignant melano-
ma represents a complicated ecosystem, where keratinocytes,
M-CAFs, and infiltrating leukocytes communicate with the
melanoma cells (Fig. 3). This interplay is able to substantially
influence the biological properties of the tumor, including its
metastatic potential. Data from grafting of the melanoma cells
to the early embryo indicate certain ability of the environment
to attenuate their malignant potential. Targeted manipulation
of the melanoma microenvironment thus seems to be a rising
therapeutic perspective promising, for example, reversion of
acquired therapeutic resistance to Vemurafenib in BRAF
mutated tumors.
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