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Heart development

Growth of the prenatal heart is predominantly based on adding
new cells (hyperplasia), in contrast to the postnatal heart, where
further increase of ventricular mass is due almost entirely to increase
in myocyte size (hypertrophy) soon after birth. The key epigenetic
factors regulating cardiac growth are the hemodynamics (volume/
preload and pressure/afterload), whose gradual increase reflects the
changing demands of the growing embryo and fetus. While genes may
play a significant part in the etiology of congenital heart disease,
hemodynamic perturbations also can lead to predictable changes in
morphogenesis and produce cardiac lesions. At present, developmen-
tal perturbations seem to produce many of the common congenital
defects, while genetic abnormalities are clearly linked to the many
chromosomal syndromes that have been well described.

The aim of this article is to provide an overview of our knowledge
of the growth and development of ventricles and valves gained from
experimental fetal animal models. Most hemodynamic perturbation
procedures by this author have been performed in the chick model.
The incubation period of the chick embryo is 21 days and the tubular
heart starts to beat on the second day of incubation. The chambers
start to differentiate by the third day, which includes the development
of the atrioventricular and outflow tract cushions. Ventricular and
outflow tract septation is completed by day 8, i.e., after one third of
the incubation period. Consequently, the developmental events
proceed over a relatively short period of time, allowing the effects
of hemodynamic perturbations to be directly studied.
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Most hemodynamic data were collected by a combination of direct
videomicroscopy, invasive ventricular servo-null pressure measure-
ments and aortic and atrioventricular Doppler flow waveforms
between days 2 and 6 when the heart grows exponentially [1,2],
while data from later stages were only collected recently with the
advent of ultrasound biomicroscopy [3,4].

The chick experimental model of hypoplastic left heart syndrome
has been produced by a reduction in left ventricular filling as
confirmed by decreased transmitral flow [5]. These hemodynamic
changes also had direct sub-cellular consequences and decreased
myocardial proliferation [6,7] producing a reduction in ventricular
mass [8]. Similar results were also reported in fetal lambs [9]. Proper
ventricular filling (preload) is thus a requirement for normal ven-
tricular growth. If the myocardium is without additional significant
pathology such as fibroelastosis, restoration of normal loading
conditions in the early post-septation chick fetal heart can result in
the normalization of growth [3], a paradigm that can be exploited in
curative surgical approaches. From the biological point of view, the
sooner such interventions are performed the better, in order to both
limit the development of potentially irreversible secondary changes
and to take advantage of the period when hyperplasia is still the
dominate growth response. In humans, cell proliferation is believed to
be active until approximately six months after birth [10,11].

Increased pressure loading is also a powerful stimulus for embryonic
ventricular cell division. Hyperplasia of cardiomyocytes was demon-
strated after conotruncal banding in the chick embryo [12], and the
remodeling of embryonic myocardial architecture was also profound in
this model (Fig. 1). During the period prior to the establishment of
coronary circulation, ventricular myocardial mass increases mainly by
the process of trabeculation to avoid myocardial ischemia due to
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Fig. 1. Increased myocardial growth in experimental embryonic pressure overload in the chick involves a thickening of the compact myocardium and coarsening of the ventricular
trabeculae. Scanning electron micrographs of four-chamber views of banded (at ED4, left) and control (right) ED8 hearts show also a ventricular septal defect (VSD) due to impaired
cardiac septation due to outflow tract ligature. Anterior halves are shown; LV, left ventricle, RV, right ventricle.

exceeding diffusion limits. Ventricular trabeculae can form up to 80% of
the ventricular myocardial volume in the pre-septation chick heart [13]
as well as in corresponding stages in human [14]. Later, compaction of
the trabeculae occurs and increases dramatically the proportion of the
compact myocardium, which enables the ventricular chambers to
generate higher pressure, and correlates in time with the completion of
ventricular septation and establishment of coronary perfusion [15].
Further increase in the thickness of the compact myocardium is
accompanied by the gradual organization of myocytes into a typical
multi-layered spiral system [16,17].

In the embryonic pressure overload model, the changes observed
could be interpreted as an acceleration of this normal developmental
sequence. Within one day of aortic constriction, an increase occurs in the
proportion and thickness of the compact myocardium [8], and there is a
precocious spiraling of the trabeculae. At later (post-septation) stages,
there is also an accelerated development of the spiral layers in the
compact myocardium [18]. Because there are also frequent anomalies of
the coronary arteries and the constant aortic constriction becomes
increasingly more severe with further embryonic development, long-
term survival, however, is problematic [ 19]. In fetal mammalian models
of left ventricular pressure overload induced by aortic constriction,
hyperplastic growth was also described [20,21]. There are also fetal
mammalian models of right ventricular pressure overload [22,23];
which have shown both cellular hyperplasia [22], as well as some degree
of myocyte hypertrophy [23].

In summary, normal (or enhanced) prenatal ventricular growth is
dependent on both sufficient preload (see previous paragraph) as
well as adequate afterload. Therefore, curative surgical approaches
for PAIVS should take this into account, and aim to establish
sufficient flow across the atrioventricular valves to promote both
adequate valve growth as well as cavitary expansion. Afterload
should also be normalized by relieving outflow obstruction that
otherwise would lead to thick-walled, small cavity ventricles and
later fibroelastosis, further decreasing inflow capacity [24]. This is
exemplified by the successful growth of hypoplastic structures in a

staged approach [25] that ultimately enabled anatomical repair with
normal circulation.

Although the transition from hyperplastic to hypertrophic growth
after birth occurs rather rapidly, there are some differences between the
two ventricles [26,27]. While left ventricular wall thickness continues to
increase after birth by a combination of hyperplasia then by myocyte
hypertrophy, right ventricular compact layer thickness does not change
significantly in the early postnatal period, because its pressure loading is
actually reduced and replaced by volume loading. This transition is also
accompanied by a brief period of increased myocyte apoptosis [26].
Nevertheless, any corrective surgery performed still in the hyperplastic
phase would seem to have greater potential to induce more physiolog-
ical compensatory remodeling based upon myocyte (and vasculature)
proliferation [28]. The principles in the development of both the left and
right ventricles are similar if the ultimate differences in pressure and
volume ventricles are taken into account.

Changes in ventricular morphology are also accompanied by a
transition of their activation pattern, as a functional ventricular
conduction system develops. Accelerated ventricular growth is accom-
panied by a similar rapid maturation of bundle branch function, while
decreased left ventricular growth is paralleled by a dysfunction of the left
bundle branch [29]. Similarly, coronary vasculogenesis keeps pace with
myocardial growth [19], and although the molecular mechanisms
regulating these processes are likely linked in some way, it has been
shown that they are controlled by genetically separable programs [30,31].

Myocardial growth is also dependent upon paracrine and autocrine
signaling through numerous growth factors produced by myocytes
themselves as well as by the epicardium. Among these, PDGF, FGF2 and
IGF are the best studied [32-35], and recent studies have shown that
their addition can induce myocyte proliferation independent of
mechanical loading [36,37]. Conversely, growth factor down regulates
myocardial proliferation in experimental models [7,36,38]. Systemic
therapeutic inhibition of growth factor signaling cascades is currently
exploited in some anti cancer therapies, but usage to treat localized
stimulation of tissue growth has so far been limited [39-41].
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Most developmental research has studied the left ventricle
because of its importance and relative ease of model development.
In addition, the precise imaging and estimation of right ventricular
function is difficult due to its more complex geometry in comparison
to the left ventricle. Three-dimensional echo brings promise of more
accurate imaging of right ventricular volumes and contraction
patterns, which are notoriously difficult to obtain from 2D images.
Biplane averaging is necessary to obtain at least approximate volumes
in B-mode echocardiograms.

Apart from the adequate development of the myocardium, heart
pumping depends upon functioning valves. Indeed, prognosis of
children with congenital heart disease with less than four (at least
potentially) functional valves is much worse than if all are useable
(absence of a functional pulmonary valve, however, is much better
tolerated). A corrective approach is made difficult because no artificial
valves available today are capable of the matching growth of babies and
small children, necessitating their upsizing and replacement. Valve
growth and maturation is, not surprisingly, dependent upon blood flow
through its orifice, and deviation from the norm (either too much or too
little) results in abnormal development. For example, decreased flow
across the mitral orifice in experimental left heart hypoplasia can result
in overgrowth of cardiac cushions that can produce, together with
asymmetric division of the common atrioventricular canal, mitral
atresia [42]. Conversely, increased flow across the right atrioventricular
orifice results in dysmorphogenesis of the right atrioventricular valve
[13] that often presents with regurgitation possibly due, at least in part
to, annular dilation [3, and our unpublished data], which resembles the
clinical observations often reported in this conditions [43].

Valvar morphogenesis is a complex process involving interplay of
many factors and has been reviewed recently [44-46]. Cardiac valves form

from the cardiac cushions and have a specific morphology governed by
the anatomical location. The processes involved in their formation include
endocardial to mesenchymal transformation [47], with the sources of
cushion mesenchyme including neural crest cells [48], epicardially
derived cells [49] as well as blood borne cells [50]. Their maturation is
in part directed by blood flow [8], and involves differentiation of the
fibroblasts with polarized synthesis of the extracellular matrix [51].
Semilunar valve development is dependent on adequate flow. A
decrease in the aortic valve diameter together with increased pul-
monary valve orifice is evident in experimental hypoplastic left heart
syndrome (Fig. 2). On the other hand, it is well recognized that the fetal
development of aortic atresia can lead to hypoplastic left heart
syndrome with fibroelastosis. Because this is a developmental event,
there have been successful attempts aimed at correcting this prenatally
[24,52,53], which has shown considerable plasticity of valves during the
fetal period. There are few data available, however, it seems likely the
right ventricle in settings of pulmonary atresia will behave similarly [54].
The potential for postnatal right ventricular development (and
catch-up growth) could be even better because of its larger functional
reserve and pace of differentiation which generally lags a few steps
behind the left ventricle [15]. To test this hypothesis, an animal model
of this condition would be highly desirable; however, creation of an
animal model of pulmonary atresia with intact interventricular sep-
tum presents a significant technical challenge. If intervention is aimed
at stages prior to septation, it is likely that there will develop a
“compensatory” ventricular septal defect to provide an outlet from
the right ventricle, which at these stages of serial chamber connection
forms the outflow portion of the embryonic heart. This was elegantly
demonstrated by Rychter and Rychterova [42] who used silver
microclip on atrial appendages to create a chick model of left or
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Fig. 2. Alteration of blood flow across the aortic and pulmonary orifice results in changes in their diameter. Histological sections from the chick experimental model of HLHS show
also abnormal orientation of the enlarged pulmonary valve; however, changes at the ventricular level are much more dramatic at this early stage (ED9). Ao, aortic valve, LV, left

ventricle, Pu, pulmonary valve, RV, right ventricle.
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right ventricular hypoplasia. While it was relatively easy to induce a
chick phenocopy of hypoplastic left heart syndrome by left atrial
clipping that shunts blood from left to right heart structures, a similar
intervention on the right atrium resulted in right ventricular
hypoplasia only rarely, because in 75% of cases a ventricular septal
defect allowed some blood to enter into the right ventricle. For the
same reason, conotruncal banding will also lead to a ventricular septal
defect (as is found in double outlet right ventricle or persistent
truncus arteriosus) and is not a satisfactory model for PA-IVS either.
While surgical interventions on the fetal (post-septation) chicks are
technically quite challenging [3], it would be possible to perform a
separate ligation of the pulmonary artery in the second third of
incubation. Abrupt hemodynamic changes however, are poorly
tolerated by the fetal and neonatal heart [11], so rather than being a
survival model this intervention would be likely only useful to
measure the acute reaction of the right ventricle to pressure overload.

Despite the difficulty in creating a model of PAIVS, the information
gained from the models of left ventricular hyoplasia have considerable
relevance. Surgical management with infants with PA-IVS should thus
be dictated chiefly by clinical experience, although the procedures
themselves should take lessons from the basic biological principles
learned from experimental animal models.
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